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3-70 A50-m-long section of a steam pipe whose outer diameter is 10 cm passes through an open space at
15°C. The average temperature of the outer surface of the pipe is measured to be 150°C. If the combined
heat transfer coefficient on the outer surface of the pipe is 20 W/m: - °C, determine () the rate of heat loss
from the steam pipe, (b) the annual cost of this energy lost if steam is generated in a natural furnace that has
an efficiency of 75 percent and the price of natural gas is $0.52/therm (1 therm _ 105,500 kJ), and (¢) the
thickness of fiberglass insulation (£ = 0.035 W/m - °C) needed in order to save 90 percent of the heat lost.
Assume the pipe temperature to remain constant at 150°C.

Solution:
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Analysis (a) The rate of heat loss from the steam pipe 1s

A, = 7DL = 7(0.1m)(50m)=1571m> -
Oun. = h AT, —T,. )= (20 Wim® °C)(15.71m? Y150~ 15)°C = 42,412 W

(&) The amount of heat loss per year 1s
0= OAr = (42.412 KJ/s)(365 % 24 % 3600s/yr) = 1. 337 10° Kl/yr
The amount of gas consumption from the natural gas furnace that has an efficiency of
75% is
1337x10° Kl/yr( 1therm
0.75 { 105.500K7

Qas = =16.903 therms/yr

The annual cost of this energy lost is
Energy cost = (Energy used)(Unit cost of energy)
=(16.903 therms/yr}($0.52 / therm) = S8720/yr

(c) In order to save 90% of the heat loss and thus to reduce 1t to 0.1x42. 412 =
4241 W, the thickness of insulation needed is determined from

- T: i Tm’r ‘T: i Tm’r
Qmsadamd =; = 1 Tn(r /7
Ro +Rirmrl‘arr'0n i (7 27 ?1) Rinenlation R.
hody 2L LAWY T
Substituting and solving for 12, we get
(150—15)°C
4241W = " = 0.0692
1 Tn(r; 70.05) 2 "

- +
(20 Wim? °C)[(2m (50m)]  2#(0.035 W/m.°C)(50 m)

Then the thickness of insulation becomes
tinculaiion =72 — 11 =692-5=192cm

A spherical tank, 1 m in diameter, is maintained at a temperature of 120°C and
exposed to a convection environment. With #2=25W/m2 = °C and T, =15°C, what
thickness of urethane foam should be added to ensure that the outer temperature of the
insulation does not exceed 40°C? What percentage reduction in heat loss results from
installing this insulation?

Solution:
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q (noins.) = hA(T,, - T..) = (25)(47)(0.5)2(120 — 15) = 8247 W

18 mW
kfoam = m‘{,_c
4rk(T. — T;
q= ——_l{_'—;—ﬂ—) = hamny*(Ty - T.,)
E h
(0.018)(120 - 40
g {1 )= (25)1p?(40-15)
[}5 r[,
.i"ﬂ = 05023 m

thk=r5 - =0.023m
g (W/ ins)=(25)(47)(0.5023)% (40 — 15) = 1982 W

Tutorial heat generation

Ql

A 2-kW resistance heater wire whose thermal conductivity is k =15 W/m - °C has a
diameter of D= 4 mm and a length of L =0.5 m, and is used to boil water (Figure
below). If the outer surface temperature of the resistance wire is 7y =105°C, determine
the temperature at the center of the wire.

Solution:
Assumptions

1. Heat transfer is steady since there is no change with time.

2. Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no

change in the axial direction.

3. Thermal conductivity is constant.

4. Heat generation in the heater is uniform.

q 2000
w2l 1(0.002)2(0.5)

g = % = = 0.318 » 10° W/m®

tanl

qTo
| —T. =
max S 4k

The temperature at the center of the wire is the maximum temperature
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(0.318+10%)(0.002)2

oy
Tax = Ts + 52 = 105 + ==

Q2

= 126 °C.

Oy dead alial

Consider a long resistance wire of radius »; = 0.2 cm and thermal conductivity ky;. = 15 W/m
- °C in which heat is generated uniformly as a result of resistance heating at a constant rate of

q =50 W/em?® (see Figure below). The wire is embedded in a 0.5-cm-thick layer of ceramic

whose thermal conductivity is Keermic 1.2 = W/m - °C. If the outer surface temperature of the

ceramic layer is measured to be 7, = 45°C, determine the temperatures at the center of the

resistance wire and the interface of the wire and the ceramic layer under steady conditions.

Solution:

The temperature distribution in the holow cylinder without heat generation is

expressed as below:

T(r) = Balsz (—) FTyy e a

In("/ry) " \ry
The temperature distribution in the solid wire

with heat generation is expressed as below:

_p o adrs ( _ ﬁ)
T(r)—T, = T 1 7) e b
dTyire(11) _ A AT ceramic(11)

_kwireA dr - _kceramic ar
From equation a:

dT  Ty1—Ts,
dr — n("/r,)

AT ceramic(T1) — Ts1—Ts2 d
dr rlln(rl/rz) ---------

From equation b

dr q
—_— = ——7
dr 2k
ATy '
wire(T1) = —_1 L eeeeenns €
dar kaire

Substitute equation (d) and (e) in (c) gives:

Ts1=Ts,2
ko. —1 ¢ =—k . fs17ls2
wire kaire 1 ceramic Tlln(rl/rz)
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gre 50%106(0.002)2 0.007
Ty = Typ +—10—n 12 = 45 4 30100902

2Kceramic T1 2%1.2 (0.002)

Tgq = 149.4°C
Atr =0, T=T,, 4

12 50%106(0.002)2
AT _ 1494 4 210C0D _ 45574
4‘kwire 4(15)

Thax = Ts,l +

2.4 Thermal Contact Resistance

Imagine two solid bars brought into contact as indicated in Figure 2-19,
with the sides of the bars insulated so that heat flows only in the axial
direction. The materials may have different thermal conductivities, but if
the sides are insulated, the heat flux must be the same through both
materials under steady-state conditions. Experience shows that the actual
temperature profile through the two materials varies approximately as
shown in Figure 2-19b. The temperature drop at plane 2, the contact plane
between the two materials, 1s said to be the result of a thermal contact
resistance. Performing an energy balance on the two materials, we obtain
h—Ta _ TDa—Tp _ A Ig—13

=kaA = 9:7
% % Axa 1/h:A A Axp

or
Ty —1I3
" Axa/kaA+1/h.A+ Axg/kpA

)

where
1/h.A is called the thermal contact resistance and

h. 1s called the contact coefficient.
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The physical mechanism of contact resistance may be better understood
by examining a joint in more detail, as shown in Figure 2-20. No real
surface is perfectly smooth, and the actual surface roughness is believed
to play a central role in determining the contact resistance. There are two
principal contributions to the heat transfer at the joint:

1. The solid-to-solid conduction at the spots of contact

2. The conduction through entrapped gases in the void spaces created by
the contact

The second factor is believed to represent the major resistance to heat
flow, because the thermal conductivity of the gas is quite small in

comparison to that of the solids.

o]
l
®
l
]

S | I

(a)

I

(&)

Figure 2-19 Illustrations of thermal-contact-resistance effect: (a) physical
situation; (b) temperature profile.
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Figure 2-20 Joint-roughness model for analysis of thermal contact
resistance.

Table 2.1 Contact conductance of typical surfaces.

1/he
Roughness Temperature, Pressure. h. fi* . i
Surface tvpe jein - pm i & atm Btu m* °C/W x 10!
416 Stainless, ground, air 100 254 S0-200 3-25 0.0015 264
304 Stainless. ground, air 45 114 20 40-70 0.003 5.28
416 Stainless. ground, with 100 2.54 30-200 7 0.002 352
0.001-1n brass shim_ air
Aluminum, ground, air 100 254 130 12-25 0.0005 0.88
10 025 150 12-25 0.0001 0.18
Aluminum, ground. with 100 254 150 12200 0.0007 1.23
0.001-1n brass shim. air
Copper. ground, air 50 127 20 12-200 0.00004 0.07
Copper. milled. air 150 381 20 10-50 0.0001 0.18
Copper, milled. vacuum 1 025 30 1-70 0.0005 0.88

Two 3.0-cm-diameter 304 stamnless-steel bars. 10 cm long. have ground surfaces and are exposed
to air with a surface roughness of about 1 ppm_ If the surfaces are pressed together with a pressure
of 50 atm and the two-bar combination 1s exposed to an overall temperature difference of 100°C.
calculate the axial heat flow and temperature drop across the contact surface.

B Solution
The overall heat flow 15 subject to three thermal resistances. one conduction resistance for each
bar. and the contact resistance. For the bars

_Ax (0.1)(4)

R =8.679°C/W
kA (16.3)m(3 x 10~2)2

Rey

1

From table 2.1 - =5.28*10"
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1 (528x 1074

B = -
= h A (3 % 10—2)2

=0.747°C/W

The total thermal resistance 1s therefore

> Ry =(2)(8.679) +0.747=18.105

and the overall heat flow 1s
AT 100
=3 Ra 18.105

=35.52W [18.83 Btu/h]

The temperature drop across the contact is found by taking the ratio of the contact resistance to
the total thermal resistance:

R. 0.747)(100
e ap_ (0-747)(100)

= =4.13°C [39.43°F
Y Ry 18.105 i ]

ATe=
In this problem the contact resistance represents about 4 percent of the total resistance.

2.5 Heat Transfer from Extended Surfaces

There are many different situations that involve such combined conduction—
convection effects, the most frequent application is one in which an extended surface
is used specifically to enhance heat transfer between a solid and an adjoining fluid.
Such an extended surface is termed a fin.

Consider the plane wall of Figure 2.11a. If T is fixed, there are two ways in which the
heat transfer rate may be increased. The convection coefficient /# could be increased
by increasing the fluid velocity, and/or the fluid temperature 7" could be reduced.
However, there are many situations for which increasing 4 to the maximum possible
value is either insufficient to obtain the desired heat transfer rate or the associated
costs are prohibitive. Such costs are related to the blower or pump power
requirements needed to increase /. through increased fluid motion. Moreover, the
second option of reducing 7 is often impractical. Examining Figure 2.11b, however,
we see that there exists a third option. That is, the heat transfer rate may be increased
by increasing the surface area across which the convection occurs. This may be done
by employing fins that extend from the wall into the surrounding fluid.
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| /://H.

e = BA(T,-T.)

{a) (5

FIGURE 2.121 Use of fins to enhance heat transfer from a plane wall. (a) Bare
surface. (b) Finned surface.

The thermal conductivity is the effective parameter in the design of fins. High thermal

conductivity gives high heat transfer rate from the surface of the extended surfaces
(fins)

Examples of fin applications are easy to find. Consider the arrangement for cooling
engine heads on motorcycles and lawn mowers or for cooling electric power
transformers. Consider also the tubes with attached fins used to promote heat
exchange between air and the working fluid of an air conditioner. Two common
finned tube arrangements are shown in Figure 2.12.

Liguid flow

Gas flow

FIGURE 2.12 Schematic of typical finned-tube heat exchangers.

Different fin configurations are illustrated in Figure 2.13. A straight fin is any
extended surface that is attached to a plane wall. It may be of uniform cross-sectional
area, or its cross-sectional area may vary with the distance x from the wall.
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I—- X

(c) ()

FIGURE 2.13 Fin configurations. (a) Straight fin of uniform cross section. (b)
Straight fin of non-uniform cross section. (¢) Annular fin. (d) Pin fin.

2.5.1 A General Conduction Analysis

Assumption:
1. No heat generation
2. Study state
3. Constant thermal conductivity.
4. Neglect radiation.
5. The convection heat transfer coefficient / is uniform over the surface.

Figure 2.14 shows the energy balance on the element on the extended surface.

FIGURE 2.14 Energy balance for an extended surface.
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q.'l.' = q.l + + d{?f.'urn'

From Fourier’s law we know that

dT
€ dx

qx = —kA

where A, is the cross-sectional area, which may vary with x. Since the conduction
heat rate at x +dx may be expressed as

daT d dT
Qx+ax = —kA; ar k ix (Ac E) dx

The convection heat transfer rate may be expressed as
dqcony = hdAs(T — T)

where dA; is the surface area of the differential element. Substituting the foregoing
rate equations into the energy balance

dT dT d dT
—kA T = —kA S — k= (Aca) dx + hdAy(T — T.)
d dT\  hdAg _
w(Ac) T =T =0
d?T . dA.dT  hdAs _ .
At oo o~ Te)=0

Or

d?T 1 dA;\ dT h dAs _ _ .
=t (A_c E) — - (k—AC E) (T—Ts) =0 (general equation)

This result provides a general form of the energy equation for an extended surface.

2.5.2 Fins of Uniform Cross-Sectional Area

We begin with the simplest case of straight rectangular and pin fins of uniform cross
section (Figure 2.15). Each fin is attached to a base surface of temperature 7(x=0) =T,
and extends into a fluid of temperature T,,. For the prescribed fins, A, is a constant
and A;= Px, where A; is the surface area measured from the base to x and P is the fin
perimeter. Accordingly, with

dA. /dx=0  (uniform)
and
dAg /dx =P,

apply the condition in the general heat equation
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